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Introduction 

Type 1 diabetes is a relatively common genetic disease affecting millions of people around the world, 

including me. It results in a malfunction of the pancreas and so the shutting down of insulin 

production which leads to higher glucose concentrations in the blood that are associated with severe 

long-term damage to many tissues if left untreated. Modern treatment has, however, tamed it into 

more of an inconvenience rather than a death sentence, which allows me to live essentially normal 

life. However, it is still not without inconveniences. One such thing I, and many other diabetics I have 

spoken with, have continuously struggled with is how to best time the injection of insulin with 

respect to a meal to minimize glucose variability, i.e., to keep its concentration in the ideal range, at 

all times as close as possible to that measured prior to eating. 

This is something that has bothered me for almost the entire decade that I have soon lived with the 

condition as the behavior of glucose levels in response to eating, even if carbohydrates are 

accurately known, often seems rather unpredictable. Sometimes they rise way more than expected 

and other times they barely change, or just drop. Changes in everyday treatment are therefore 

primarily made with the method of trial and error, which is highly unsatisfactory for an engineering-

oriented person like me. That is why I want to approach this problem much more systematically and 

come up with a method to mathematically determine the optimal timing using the wide range of 

mathematics we have learned on the IB to finally get some clarity on the issue and so potentially 

further improve the control of the disease for myself and possibly others as well. With further 

development it could be used by the very active diabetes open-source community to, for example, 

build an algorithm that automatically calculates the optimal injection times based on an individual’s 

historical data, provided that it is sufficient. What I also like about the topic is that it is a concrete 

and useful real-world application of mathematics that inherently combines many of the most 

interesting branches of mathematics to me, such as statistics, modeling and calculus. 
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Aim and approach 

My aim is to determine the optimal timing for insulin injection to minimize glucose level variability 

after a meal in ideal conditions. Implicitly, although beyond the scope of this exploration, a 

secondary aim of mine is also to develop a robust method for its determination in the hopes of 

providing a basis for such a feature in diabetes-related software. I will use my own data, since its 

collection requires certain exactitude and health data is generally considered very sensitive.  

My initial idea was to try to get my glucose levels stable within an ideal range and deliberately 

manipulate them by certain dosages, while altering my routine to control other variables. However, I 

chose not to pursue this deliberate self-experimentation as it would have been on the gray area of 

the IB guidelines, and I wanted the method to work with noisier, more realistic data as well.  

Instead, for the purposes of data collection I decided to just start writing down the amounts of both 

insulin and carbohydrates and their exact timings for over a month. From these I could then isolate 

the naturally occurring instances with the most stable ends, in which I had corrected the levels by 1 

unit (0.01ml) of Fiasp insulin or 10.5 grams of carbohydrates from 5 “Siripiri” glucose tablets, which I 

used exclusively for all moderate corrections during the data collection period in order to carefully 

control both the amount and composition of the carbohydrates. The amounts were chosen based on 

my insulin to carbohydrates dosage ratio of 1 to 10, meaning that they should produce similar 

magnitudes of change, only in opposite directions. As the initial concentration of glucose has an 

effect on the extent of the effect of either carbohydrates or insulin, this will introduce more error 

and uncertainty but averaging multiple observations should give at least somewhat directive values.  

I will then average this data on the magnitude and duration of the glucose level changes and model 

their behaviors after consumption of 10.5g carbohydrates and 1 unit of insulin (0.01ml) to get 

approximate curves and functions for both. They can then be combined into a single function, the 
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total area under which can be used as a proxy for glucose variability, in this case defined as any 

change in concentration, as it is a measure of absolute divergence from zero over time, giving a 

single, easily comparable number involving both the magnitude and time of glucose concentration 

change. I can then transform the insulin curve in the horizontal dimension to change its timing with 

respect to carbohydrate consumption. The optimal timing can be found as that transformation of the 

insulin curve, which produces the smallest area, the definite integral, under the combined curve. 

Due to time constraints and the massive amounts of data processing necessary, I concluded that I 

had to program everything. However, my enthusiasm greatly outweighed my expertise. I had 

searched this excuse for long due to my fascination with computer science and software and now 

that the opportunity to learn it in a meaningful context finally presented itself, I was very excited to 

throw myself into it. I decided to learn Python, which is a relatively easy-to-learn but extremely 

powerful programming language that enabled me to develop and test the method simultaneously to 

collecting the data, which was a long and unpredictable process as I could not do it systematically, 

but only hope to collect good data while living normally. Continuously calculating all values of the 

dataset when it was still growing allowed me to take advantage of the law of large numbers without 

having to wait for the final results. Additionally, any errors I made could be corrected easily and I 

could continue to use and develop the algorithm even after finishing the project. 

Data collection and results 

Collecting the data was very easy as the only thing I had to change in my daily routine was just to 

remember to write down the amounts of insulin and carbohydrates I normally injected and 

consumed. I regularly wear a Dexcom G6 continuous glucose monitoring (CGM) sensor, held in place 

by an adhesive patch in my arm, attached to which is a transmitter that reads and transmits the 

glucose concentration values measured from my interstitial fluid to my cellphone in real time at 5-
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minute intervals, which then produces a continuous curve, the values of which I could download as a 

CSV-file from the Dexcom Clarity website. This corresponds to systematic sampling, which is the only 

method available for any real-time glucose monitoring. A limitation of this is the rather long time 

between datapoints obtained with current technology, that only allows us to look at the very general 

trends, but on the upside, it makes data processing much easier and faster while filtering out noise. 

There is uncertainty in the sensor measurements, but this may be neglected as it is relatively small 

(Dexcom, Inc., 2021; Danne, 2017) and most likely systematic which should thus not have any effect on 

the results as only the general trends, rather than the values themselves, are of key interest. Below 

is a sample of the formatted CGM data used in the exploration, showing some glucose values and all 

event types of interest from the data collection interval between 27.10.2021 and 1.12.2021. 

Table 1 – A sample of formatted CGM data from the interval 27.10.2021 - 1.12.2021, showing glucose values, 
carbohydrate consumption and insulin injections 
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Table 1 shows glucose concentrations with 5-minute intervals as well as the manually entered events 

affecting it and their details. During data collection, I used two different transmitters and at least 

three different sensors and various ampoules of insulin injected manually with a NovoPen Echo, all 

with (not-too-noticeably) varying levels of efficacy and error, that might or might not add up to a 

greater overall error.  

The total number of data points accumulated during the data collection period was 10 440, which 

would make for a rather long table. Therefore, they are better presented in a graph such as figure 1 

below, which shows a continuous, interpolated trendline for glucose concentration (in blue) as well 

as each instance where 10.5 carbohydrates were consumed in the form of 5 “Siripiri” glucose tablets 

(in green) or 1 unit (0.01ml) of Fiasp (fast-acting) insulin was injected (in red).  

Figure 1 – Graph of glucose concentration against time on the interval 27.10.2021 – 1.12.2021 with consumption of 10.5 
carbohydrates and injection of one unit of insulin highlighted in green and red respectively 
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The variables affecting the behavior of glucose levels are numerous: carbohydrate content and their 

form (sugars, starches, fiber) in the food, the amount and quality of fats and other nutrients in the 

food, amount, effectiveness and qualities (such as duration of action) of insulin used, amount of 

long-acting insulin (in this case 16 to 20 units of Levemir twice a day) in the body, the extent of 

functionality of the pancreas, insulin resistance and metabolism of the body, the behavior of the liver 

and other biological processes, time between meals and injections, duration of meals, time of day 

(phase of circadian clock), overlapping insulin, injection site, the initial glucose level, its direction and 

rate of change, amount of sleep, exercise, stress and the physical environment and uncertainty and 

error in the measuring devices as well as the mechanical nature and errors of the injector or its 

needles. As there is no way to control all these variables, the investigation must be limited to a very 

approximate, ideal case, the exploration of which, however, may reveal a hint of a universal method 

which may eventually allow taking these additional factors into account.  

To keep as many of these variables as constant as possible, I only considered the instances of 

consumption of 10.5 carbohydrates and 1 unit of insulin from the moment of logging to three hours 

forward. This three-hour interval is chosen based on both personal experience and official time of 

action data from the manufacturer Novo Nordisk (2019), which states that the insulin dosage can be 

taken anywhere from the start of the meal to 20 minutes after beginning the meal. Within this 3-

hour interval, the peak effect is reached with all dosages and the insulin concentration has had time 

to significantly decrease according to the data, while the probability of other events falling onto the 

inspected interval is reduced. The same interval is used for both for realistic comparison. Below are 

graphs of the min-max and max-min behaviors of the glucose levels after carbohydrate consumption 

(Fig. 2, green in Fig. 1) and insulin injection (Fig. 3, red in Fig. 1) in the three-hour interval, 
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transformed to start from the origin by plotting them on the same domain starting from zero and by 

transforming them by 𝑓(𝑥) − 𝑓(0) to visually compare their relative behaviors:  

Figures 2 & 3 – Graphs of interpolated glucose behavior after carbohydrate consumption (left) and insulin injection 

(right) 

From this three-hour interval I programmed the algorithm to choose the data points from the first 

minimum to the first maximum in the case of carbohydrate consumption and first maximum to first 

minimum in the case of insulin injection. This approach may be a key weakness, but one made to 

offset the effect of other variables such as prior “momentum” of the glucose levels and later 

correction events. It also makes the data much easier and cleaner to process, compare and model.  

One final key assumption made for ease of modeling is that of stable ends. It is assumed that the 

change in glucose levels after an event is distinct and permanent. The ideal case is thus the absence 

of any variables, which should result in the glucose concentration staying constant on a certain level, 

which in this case is zero for the purpose of modeling change, and only be affected by the selected 

event increasing or decreasing it. After the effect has been manifested, i.e., the first maximum or 

minimum has been reached, it is again free from influences and should thus stay constant on the 

level it rose or dropped to. This is obviously never the case in real life, even under laboratory 

conditions due to bodily functions alone but is something that significantly eases the modeling 

process by allowing the averaging of values of curves of different lengths.  
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Statistical processing of data 

As I wanted to make the algorithm entirely automatic, data selection, processing and filtering had to 

be based on simple statistical procedures rather than hand-picking. Therefore, the data was filtered 

in terms of both the duration of the change in glucose concentration as well as its end magnitude by 

finding and discarding outliers, defined as all values 1.5 ⋅ 𝐼𝑄𝑅 greater or smaller than 𝑄3 or 𝑄1 

respectively, where 𝐼𝑄𝑅 is the interquartile range and 𝑄3 and 𝑄1 are the upper and lower quartiles, 

enclosing the 𝐼𝑄𝑅, which holds 50% of the data within it. Due to the attempt to keep it simple, 

understandable and concise, this is most likely where the majority of the potential improvements to 

the algorithm lie as, for example, outliers could be defined differently and the data selected does not 

currently account for many of the variables mentioned in the data collection and results section such 

as initial magnitudes, rates of change and proximity of other events. 

Below is a table of the data in ascending order, resulting from filtering to the first extreme, used to 

calculate the quartiles for both duration and end magnitude for both carbohydrate consumption and 

insulin injection with resulting outliers highlighted in red.  

Table 2 – Durations and end magnitudes for carbohydrates consumed and insulin injected in ascending order for 
calculating quartiles (Bolded red values signify to-be outliers after processing) 

 

 

These data can be summarized as follows: 

Durations to reach first maximum for 
carbohydrates consumed (minutes) 

15, 20, 20, 20, 20, 25, 25, 35, 40, 40, 40, 45, 45, 45, 45, 45, 55, 
55, 60, 60, 60, 65, 65, 80, 85, 85, 85, 100, 115, 140, 150, 160 

End magnitudes for carbohydrates 
consumed (mmol/L) 

0.1, 0.1, 0.3, 0.7, 1.0, 1.0, 1.0, 1.4, 1.9, 2.6, 2.7, 2.7, 2.8, 2.8, 2.9, 
3.0, 3.0, 3.1, 3.4, 3.9, 3.9, 4.0, 4.2, 4.3, 4.7, 5.1, 5.7, 6.6, 7.6, 
10.1, 12.1, 16.4 

Durations to reach first minimum for 
insulin injected (minutes) 

10, 10, 15, 15, 15, 15, 15, 15, 20, 20, 20, 20, 20, 20, 25, 30, 30, 
35, 35, 40, 50, 50, 50, 50, 50, 55, 55, 60, 60, 75, 80, 85, 90, 90, 
90, 90, 90, 100, 105, 110, 110, 135, 170 

End magnitudes for insulin injected 
(mmol/L) 

-7.6, -6.0, -5.7, -4.9, -4.8, -4.5, -4.5, -4.4, -4.2, -4.2, -3.5, -3.2, -
3.0, -2.7, -2.4, -2.2, -2.1, -1.9, -1.9, -1.8, -1.7, -1.7, -1.7, -1.7, -
1.7, -1.6, -1.4, -1.4, -1.0, -0.9, -0.8, -0.7, -0.5, -0.4, -0.3, -0.3, -
0.3, -0.1, -0.1, -0.1, -0.1, 0.0, 0.0 
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Table 3 – Statistical summary of the data where 𝑄1 is the lower quartile, 𝑄2 is the median, 𝑄3 is the upper quartile, 𝐼𝑄𝑅 
is the interquartile range, 𝑥̅ is the mean of observations and 𝑛 is the number of data points considered 

Table 3 shows some of the key characteristics of carbohydrate consumption and insulin injection 

data, them being mainly its central tendencies, the medians and means, as well as measures of 

dispersion such as the interquartile range. It also defines the lower and upper fences, values under 

and over which are considered outliers. For this exploration, they are considered satisfactory as they 

remove the most extreme outliers. However, as is apparent from, for example, the lower fences for 

duration being negative minutes, they are not quite realistic and tight enough as I would already 

consider too little or too quick a change an outlier whereas the algorithm passes them as valid 

values. Therefore, a further improvement would be to either gather a lot more data and hope for the 

interquartile ranges to automatically tighten or filter the data with more specific conditions. 

Decimal quartiles were handled according to the method detailed on the Brilliant wiki according to 

which the integer and fractional parts are separated and “the positive difference of the integer 

observation and its next observation multiplied by the fractional value” is added to the integer 

number observation. (Brilliant Worldwide, Inc., 2021) The graphs below show the filtered values with 

 

Consumption of 10.5 carbohydrates Injection of 1 unit of insulin 

Duration 
(minutes) 

End magnitude 
(mmol/L) 

Duration 
(minutes) 

End magnitude 
(mmol/L) 

Lower fence (𝑸𝟏 − 𝟏. 𝟓 ⋅ 𝑰𝑸𝑹) -35.00 -3.088 -85.00 -8.000 

Minimum value 15.00 0.100 10.00 -7.600 

Lower quartile 𝑸𝟏 =
𝒏+𝟏

𝟒
th value 36.25 1.525 20.00 -3.500 

Median 𝑸𝟐 =
𝒏+𝟏

𝟐
th value 50.00 3.000 50.00 -1.700 

Upper quartile 𝑸𝟑 =
𝟑(𝒏+𝟏)

𝟒
th value 83.75 4.600 90.00 -0.500 

Maximum value 160.00 16.400 170.00 0.000 

Upper fence (𝑸𝟑 + 𝟏. 𝟓 ⋅ 𝑰𝑸𝑹) 155.00 9.213 195.00 4.000 

𝑰𝑸𝑹 = 𝑸𝟑 − 𝑸𝟏 47.50 3.075 70.00 3.000 

Mean 𝒙̅ =
∑ 𝒙

𝒏
 57.58 2.983 54.07 -2.186 
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their ends extended from the maximum or minimum point reached up to the length of the instance 

with the longest duration: 

Figures 4 & 5 – Extended graphs of filtered data for carbohydrate consumption (left) and insulin injection (right) 

The straight black lines in figures 4 and 5 denote the means on each axis; the vertical one being the 

mean of duration and the horizontal being the mean of glucose concentration after the change. At 

their intersections, they divide the graphs into four rectangles of which the one enclosed by the 

mean lines and the axes will be the section modeled for each.  

To construct the average curve filling up the rectangle, I rounded up the duration means up to 60 

and 55 to still include the data point right after the duration mean and then used those as the limits 

of the model as the aim is to find the optimal timing. The curves shorter than it were extended with 

the final value in accordance with the assumption of stable ends so that each point’s magnitude 

could be averaged across all curves. Averaging the magnitudes of glucose concentration changes to 

an accuracy of three decimals (to retain enough relevant information for the shape of the curve) at 

each point on the time interval from zero up to the duration mean gives the following values:  

Table 4 – Average glucose concentrations against time as a result of consumption of 10.5 carbohydrates 

Glucose concentration 
change (mmol/L) 

0.000, -0.128, -0.328, -0.493, -0.679, -0.842, -1.000, -1.130, -1.279, -1.419, 
-1.535, -1.686 

Time (minutes) 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 
Table 5 – Average glucose concentrations against time as a result of injection of 1 unit of insulin 

Glucose concentration 
change (mmol/L) 

0.000, 0.138, 0.334, 0.603, 0.934, 1.272, 1.655, 2.028, 2.276, 2.448, 2.597, 
2.686, 2.769 

Time (minutes) 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 
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Producing the scatter plots below:  

Figures 6 & 7 – Averaged glucose concentration curves for carbohydrate consumption (left) and insulin injection (right) 

Figures 8 & 9 – Averaged glucose concentration curves for carbohydrate consumption (left) and insulin injection (right) 
with extended, stable ends 

Figures 8 and 9 show data sets extended from both ends with the same number of data points as 

their length, to incorporate the assumption of stable ends, setting the context of the change and so 

making their interpretation and modeling easier. 

Modeling glucose concentration changes after consumption of 10.5 carbohydrates 

Looking at figures 6 and 8, some general requirements for an appropriate model can be inferred. 

From figure 6 it can be seen that this function must have an initially gradually increasing slope that 

reaches its maximum at around the middle point and then gradually decreases to a constant value, 
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creating a loose S-shape. Figure 8 shows the requirement of two distinct horizontal asymptotes that 

confine the change and make it permanent when free of other influences.  

The generalized logistic function  

 

where 𝐹 in this case refers to the glucose concentration as a function of time (the independent 

variable, 𝑡) that starts from 𝐴, the left (in this case lower) asymptote, rising to 𝐾 (or 𝐴 +
𝐾–𝐴

𝐶
1
𝑣

 if 𝐶 ≠ 1), 

the right (in this case upper) asymptote at growth rate 𝐵, while 𝑣 >  0 affects near which asymptote 

the maximum growth occurs, 𝑄 is related to the value of 𝐹(0), 𝐶 typically takes a value of 1 and 𝑀 is 

the 𝑡 value of the sigmoid’s midpoint, is a sigmoid function that fulfills both the requirements of 

stable ends (horizontal asymptotes) and the gradually changing rate of change that is at its peak 

around midway through the transition, closely resembling the S-shape of the data. Also known as the 

Richard's curve, it was originally developed for growth modeling as an extension of the simpler 

logistic function (Wikipedia contributors, 2021), which makes it very fitting for modeling glucose 

concentration changes. A logistic function gives a great fit as well, but the generalized version offers 

the most flexibility for curve fitting due to its larger number of parameters, providing more flexible 

curves, which is better in the context of the algorithm as the symmetry forced by a logistic function 

may be subject to change with additional data and overfitting is not really an issue as the datapoints 

are already averaged and follow a distinct shape. Hence, as long as the function produced is 

integrable, the more parameters, the closer the smooth fit, the better.  

The fitting itself was done with SciPy’s curve fit function (The SciPy community, 2021) utilizing the 

Levenberg-Marquardt algorithm (The SciPy community, 2021; Wikipedia contributors, 2021), which is an 

iterative procedure to minimize the sum of squares of residuals, the in-sample prediction errors:  

𝑆 = ∑ 𝑟𝑖
2

𝑚

𝑖=1
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where 𝑆 is the sum of squares of the residuals, 𝑚 is the number of datapoints, 𝑟𝑖 is the 𝑖th residual 

given by 𝑟𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖, 𝛽) where 𝑦𝑖 is the actual 𝑦 value and 𝑓(𝑥𝑖, 𝛽) is the 𝑦 value predicted by the 

model curve that takes the arguments of 𝑥𝑖, the independent variable and 𝛽, the model curve’s 

parameters, and 𝑖 is the iteration number up to 𝑚. The minimum value of 𝑆 occurs where the 

gradient, its derivative with respect to 𝛽, is zero. Rather simplistically expressed; the parameters, 𝛽 

are then refined iteratively according to the Levenberg-Marquardt algorithm to find this minimum, 

based on initial guesses for the parameters, necessary to reduce the unknowns to just the 

independent variable, that must already be somewhat close to the final solution. In other words, the 

curve fit function only adjusted, sharpened so to say, the parameters already guessed by me. The 

initial guesses for the parameters were as follows: 

𝑨 = 𝟎 was already set by me, since there is no change in glucose concentration at 𝑡 = 0. 

𝑲 ≈ 𝟐. 𝟕𝟔𝟗 as this is the average magnitude of the glucose concentrations at 𝑡 = 60. 

𝑸 = 𝑪 = 𝒗 = 𝟏 as this is the case of the logistic function, which appeared to be a close enough 

approximation and was much easier to evaluate by hand. 

𝑴 = 𝟑𝟎 as this is the 𝑡 value of the sigmoid’s midpoint. 

𝑩 ≈ 𝟎. 𝟎𝟗𝟗𝟐 as this was visually the closest to the steepness of the scatter plot in figure 6 acquired 

from calculations involving the real averaged data points. Using all the values for the variables 

defined above and substituting the point (10, 0.334) into the generalized logistic function gave: 

𝐹(10) = 0.334 = 0 +
2.769 − 0

(1 + 1𝑒−𝐵(10–30))
1
1
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which is equivalent to the logistic function 𝑓(𝑥) =
𝐿

(1+𝑒−𝑘(𝑥–𝑥0))
 where 𝐿 is the curve’s maximum 

value, 𝑘 is the logistic growth rate or steepness of the curve and 𝑥0 is the 𝑥 value of the sigmoid’s 

midpoint. Solving this gave: 

0.334 =
2.769

(1 + 𝑒−𝐵(10–30))
=

2.769

(1 + 𝑒20𝐵)
  

(1 + 𝑒20𝐵) =
2.769

0.334
 

𝑒20𝐵 =
2.769

0.334
− 1 ≈ 7.290 

ln 7.290 = 20𝐵 

𝐵 =
ln 7.290

20
≈ 0.0992 

Calling the curve fit function with these rough estimates gives:  

𝑨 = −𝟎. 𝟎𝟎𝟖𝟏𝟑𝟗𝟒𝟗𝟑𝟗𝟖𝟎𝟗𝟕𝟏𝟎𝟑𝟖  
𝑲 = 𝟐. 𝟕𝟗𝟒𝟑𝟐𝟏𝟐𝟐𝟎𝟔𝟏𝟓𝟓𝟗𝟖  
C = 1.002164676526231 
𝑸 = 𝟎. 𝟓𝟐𝟐𝟗𝟔𝟐𝟖𝟎𝟑𝟕𝟔𝟖𝟔𝟕𝟕𝟐  

𝑩 = 𝟎. 𝟏𝟎𝟎𝟓𝟔𝟏𝟗𝟏𝟓𝟑𝟓𝟑𝟏𝟓𝟏𝟓𝟏  
𝑴 = 𝟐𝟓. 𝟑𝟗𝟑𝟒𝟑𝟑𝟎𝟓𝟗𝟗𝟗𝟕𝟑𝟕  
𝒗 = 𝟎. 𝟓𝟕𝟐𝟑𝟓𝟕𝟏𝟖𝟒𝟎𝟗𝟗𝟎𝟗𝟔𝟓  

Table 6 – Curve fit parameters based on the Levenberg-Marquardt algorithm 

Which then produces the following curve: 

Figure 10 – Generalized logistic function fit with parameters based on the Levenberg-Marquardt algorithm (orange) with 
logistic function guess values as reference (light blue) 
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No elaborate testing is necessary as the purpose of the fit function (orange) was to follow the 

already averaged points as closely as possible, which it quite unmistakably does, as demonstrated in 

figure 10. The guess values (producing the function in light blue) were not too far off either but 

clearly skewed the curve slightly to the right. The additional parameters coupled with close guesses 

allowed the algorithm to make simultaneous adjustments and thus perform an extremely close fit 

for the function 𝐹(𝑡) with values approximated to three decimal places (for clarity):  

𝐹(𝑡) = −0.008 +
2.794 – (−0.008) 

(1.002 + 0.523𝑒−0.101(𝑡–25.393 ))
1

0.572 

 

Modeling glucose concentration changes after injection of 1 unit of insulin 

Figure 7 displays much more linear characteristics than figure 6 albeit with arguably a negligibly 

subtle kink in the middle. Due to the assumption of stable ends as demonstrated in figure 9, 

however, a simple linear function would not suffice as it would be continuous and thus never settle 

onto a certain level. Therefore, a piecewise linear function, which is essentially a collection of sub-

functions only defined for certain domain intervals, is required to include the stable ends: 

𝐺(𝑡) = {

𝑎(𝑡 + 𝑡𝑡𝑟) + 𝑏
𝑐(𝑡 + 𝑡𝑡𝑟) + 𝑑
𝑒(𝑡 + 𝑡𝑡𝑟) + ℎ

𝑡 < 𝑡0    
     𝑡0 ≤ 𝑡 ≤ 𝑡1

𝑡 > 𝑡1    
 

where 𝐺 refers to the glucose concentration as a function of time, 𝑡0 and 𝑡1 are the breakpoints 

confining the sub-functions to the domain intervals up to, between and after them, 𝑎, 𝑐 and 𝑒 are 

the slopes of the linear sub-functions and 𝑏, 𝑑 and ℎ (instead of 𝑓 or 𝑔 not to be confused as a 

function) are their y-intercepts when the parameter for horizontal transformations, 𝑡𝑡𝑟, is zero. Their 

values can be set by hand relatively easily: 

𝒕𝟎 = 𝟎 as this is defined to be the start time of the change. 

𝒕𝟏 = 𝟓𝟓 as this is the duration mean for the change rounded up to the closest 5. 
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𝒂 = 𝒆 = 𝟎 as the stable ends are horizontal lines with slopes of 0, meaning that they stay constant. 

𝒃 = 𝟎 as this is defined to be the start magnitude of the change. 

𝒉 ≈ −𝟏. 𝟔𝟖𝟔 as this is the average magnitude of the glucose concentrations at 𝑡 = 55. 

𝒄 ≈  −𝟎. 𝟎𝟑𝟎𝟕 from calculating the overall slope over the interval 0 ≤ 𝑡 ≤ 55:  

𝑚 =
𝑦1 − 𝑦0

𝑡1 − 𝑡0
=

−1.686 − 0

55 − 0
=

−1.686

55
= −0.0307 

𝒅 = 𝟎 as the second sub-function starts from zero and hence its (𝐺(𝑡) =) 𝑦-intercept is zero. 

𝒕𝒕𝒓 = 0 initially as this is only added as a parameter for the curve fitting algorithm. 

As can be seen in the graph below as the light blue curve, these values produce a relatively good fit 

already, although the curve is shifted to the right in relation to most of the datapoints just a little bit, 

suggesting that another function allowing for curvature might be incrementally better. For the 

purposes of this exploration, however, a linear approximation will suffice as it is already so close. To 

ensure the best possible fit, however, I decided to run the algorithm detailed above only for 𝑡𝑡𝑟 and 

𝑐 with the variables defined above as initial guesses producing the orange curve: 

Figure 11 – Piecewise linear function fit with parameters based on the Levenberg-Marquardt algorithm with guess values 
defined above as reference  
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As a result, the curve is shifted left by the amount of |𝑡𝑡𝑟| ≈ 0.796 and its gradient steepened 

slightly to −0.0311, necessitating the moving of the breakpoint, 𝑡1 to  55 − 0.796 = 54.204. This 

produces the fit function 𝐺(𝑡) with values approximated to three decimal places (for clarity):  

𝐺(𝑡) = {
0                
−0.0311𝑡
−1.686    

𝑡 < 0               
    0 ≤ 𝑡 ≤ 54.204

𝑡 > 54.204    
  

 

Finding the optimal timing of insulin injection to minimize glucose variability 

As already discussed in the aim and approach section, the optimal timing for insulin injection to 

minimize glucose variability can be found as the horizontal transformation of the piecewise linear 

function representing the change in glucose concentration in response to insulin injection, that 

minimizes the total area under the curve produced by the function combined of the model functions. 

This area is a proxy for glucose variability due to being a measure of divergence from zero over time. 

Combining the resulting functions from separately modeling both the glucose concentration as a 

function of time in response to consumption of 10.5 carbohydrates from 5 “Siripiri” tablets and 

injection of 1 unit (0.01ml) of Fiasp insulin produces the following combined function: 

𝐹(𝑡) + 𝐺(𝑡) = −0.008 +
2.794 – (−0.008)

(1.002 + 0.523𝑒−0.101(𝑡–25.393 ))
1

0.572 

+ {
0                
−0.0311𝑡
−1.686    

𝑡 < 0               
    0 ≤ 𝑡 ≤ 54.204

𝑡 > 54.204    
 

The total area under the curve produced by this function, visualized in the graph below, can be 

found from integrating the function between some limits to produce its definite integral. The limits 

of −115 and 115 were chosen based on the sum of the mean times, the durations of the changes, 

because with such extreme horizontal transformations the functions’ changing parts no longer 

overlap and the area will therefore not decrease in either direction.  
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Figure 12 – Area under the combined function 

This total area is given by the absolute value of the definite integral of the combined function: 

∫ |𝐹(𝑡) + 𝐺(𝑡 + 𝑡𝑡𝑟)| 𝑑𝑡

115

−115

 

= ∫ |−0.008 +
2.794 – (−0.008)

(1.002 + 0.523𝑒−0.101(𝑡–25.393 ))
1

0.572 

+ {
0                

−0.0311(𝑡 + 𝑡𝑡𝑟

−1.686    
)

𝑡 + 𝑡𝑡𝑟 < 0               
    0 ≤ 𝑡 + 𝑡𝑡𝑟 ≤ 54.204

𝑡 + 𝑡𝑡𝑟 > 54.204    
|  𝑑𝑡

115

−115

 

where 𝑡𝑡𝑟 is the horizontal transformation of the piecewise linear function.  

For the horizontal transformations, I generated a total of 13 800 values corresponding to changes of 

one second on a symmetrical interval of 2 ⋅ carbohydrate mean times + 4 ⋅ insulin mean times 

(from −170 to 170 minutes), which I observed to be computationally feasible, albeit slow, but also 

to hold both the minimum and maximum areas, producing a beautiful scatter plot of the values of 

the definite integral, the area under the curve, against the horizontal transformation of the 
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piecewise linear function when areas of the combined function are computed for each horizontal 

transformation using SciPy’s quad function for numerical integration, the method with the best 

balance of speed and accuracy for such a costly computation, even for a computer:  

Figure 13 – Scatter graph of the total area under the combined function 𝐹(𝑡) + 𝐺(𝑡 + 𝑡𝑡𝑟) against the horizontal 
transformation of 𝐺(𝑡) 

This could most likely be modeled by either some piecewise function or by an asymmetric gaussian 

function achieved by combining a gaussian function with a logistic function:  𝑎𝑒
(𝑥−𝑏)2

2𝑒2 +
𝐿

1+𝑒𝑘(𝑥−𝑥0)  

which could then be differentiated in terms of x to find the minimum, 
𝑑𝑦

𝑑𝑥
= 0  AND  

𝑑2𝑦

𝑑𝑥2 > 0, but  

doing this with the dataset generated would not make much sense as the modeling itself would 

require knowing the minimum point, which can be found by just iterating through all the computed 

values and choosing the smallest one. 

The minimum area is 92.309, which is achieved when 𝑡𝑡𝑟 ≈ 8.193. As this value is positive, the curve 

resulting from insulin injection is transformed horizontally to the left by this amount, corresponding 

to a timing of the insulin of 8 minutes and 12 seconds before eating (as 0.193 ⋅ 60 ≈ 12). The graph 

below shows the total area under the combined function before and after the transformation 

resulting in the minimum value of the definite integral: 
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Figure 14 – Total area under the combined curve with 𝑡𝑡𝑟 = 0 in blue compared to the area with 𝑡𝑡𝑟 = 8.193 in orange 

Analysis and evaluation 

As can be seen in figure 14, the difference in area under the curve is rather small; in fact, only 

96.928 (area with 𝑡𝑡𝑟 = 0) −  92.309 (area with 𝑡𝑡𝑟 ≈ 8.193) =  4.619, implying that for 

convenience’s sake, the entire 8-minute interval before eating is rather optimal. What is especially 

noticeable, however, is that whereas the area with 𝑡𝑡𝑟 = 0 in blue stays above the horizontal axis 

essentially throughout, the area with 𝑡𝑡𝑟 = 8.193 initially dips below the horizontal axis. To 

investigate this dip in more detail, we must look at a wider interval of horizontal transformations.  

The maximum improvement from the area at 𝑡𝑡𝑟 = 0 is a 4.619 decrease. Suppose we can tolerate a 

similar worsening from the default starting point 𝑡𝑡𝑟 = 0, recommended by the nurses and doctors, 

usually even in the presence of the 20-minute leeway according to the manufacturer. This gives us a 

value of 96.928 + 4.619 =  101.547 for the area under the curve, which is then the threshold of 



21 
 

tolerance. The interval of horizontal transformations producing an area less than or equal to this is 

from −2.772 to 21.325 as can be seen in figure 13. Notably, the negative transformation (to the 

right) is much smaller than the 20 minutes promised by the manufacturer. Similarly, the 

transformation to the left is much more than expected, resulting in the dosing interval essentially 

being inverted. The graph on the 

right compares the areas and curves 

of maximum tolerance (orange and 

green) to the official dose timing 

interval recommended by the 

manufacturer (light blue and blue). It 

can be seen in figure 15 that 

something is not quite right with the 

dosing interval being inverted as the 

recommended interval would produce 

the largest area increases.   

My method clearly favors transformations to the left even at the cost of dips below the horizontal 

axis, which leads to greater fluctuation of the glucose concentration below and above the initial 

concentration, which may lead the person interpreting the values in real time to make hasty 

correction decisions, leading to amplified fluctuation. This effect would be even worse for slower 

carbohydrates and larger amounts of insulin as the dip would be larger. This raises a question of the 

appropriateness of using the area under the curve as a measure of glucose variability. It expresses 

and minimizes the absolute divergence from zero but does so by increasing fluctuation, which would 

perhaps be a more relevant measure of variation based on this.  

Figure 15 – Comparison of areas of maximum tolerance to areas of 
recommended timing interval 
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The fact that the horizontal transformations to the right produce much larger areas than those to the 

left, as seen in figure 15, might also signal of issues created by the min-max and max-min 

approaches. It may, for example, be the case that it takes the body longer to register carbohydrates 

than insulin, which would justify the 20-minute dosing window after eating. As this delay is entirely 

neglected in the models that only start from the first observed effect, these phenomena might go 

entirely unnoticed, therefore contributing to the error.  

It can also be noticed that my 
1

10
 ratio of insulin to carbohydrates might not quite hold as the level on 

which the combined curve settles, is higher than the level from where it starts. This is due to the 

difference in the means of magnitude of change, which are ≈ −2.2 for 1 unit of insulin and ≈ 3.0 for 

10.5 carbohydrates from 5 ‘Siripiri” glucose tablets, which may be another factor for why the 

method favors the dips. The values are, however, brought down by the very small values that do not 

get filtered and the fact that there appear to be feedback loops that weaken the effect of insulin at 

higher concentrations and the effect of glucose at lower concentrations, which are the conditions 

under which these corrections are made, makes them somewhat unreliable. 

Therefore, as it is difficult to better control the variables in data collection, improvements could be 

made in data selection and filtering by using more sophisticated statistical methods to, for example, 

carefully tighten the range of data selected. Delay to first effect must also be taken into account in 

future development by, for example, utilizing the stable ends to push the changing part of the 

function further so as to make 0 always denote the timing of an event rather than the first observed 

effect, or by throwing both assumptions out entirely and collecting much more data to hopefully 

even out the effect of other variables naturally. To better consider the up-and-down fluctuation in 

addition to just divergence over time from the horizontal, the object of minimization could also be, 

for example, the range of the combined function (maximum 𝑦-value – minimum 𝑦-value), which, 

with current assumptions, would give 𝑡𝑡𝑟 to be approximately 0. 
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Conclusion 

Despite having to learn programming with python, using related software and libraries and 

understanding some new mathematics from scratch simultaneously to collecting data and finding 

some biases in my method and flaws in my assumptions in the end, I did manage to accomplish my 

aim to the extent it was defined. Neglecting the seconds as excessive precision, the optimal timing 

for insulin injection to minimize glucose level variability for me personally after a meal in ideal 

conditions is about 8 minutes before the meal. Due to the improvement being rather marginal 

compared to the recommendation, however, it might be safe to say that the optimum is rather an 

interval from no earlier than 8 minutes prior to beginning the meal, although this might differ for 

longer meals and slower carbohydrates. I might nevertheless take my finding to the next doctor’s 

appointment and ask them what do they think of it for me. Although the result is too weak for 

anything really actionable for the various reasons mentioned above, it did importantly remind me of 

the fact that although fast, Fiasp should still be used as close to the beginning of a meal as possible, 

if not a few minutes prior, which is something I have not always followed closely enough.  

Although in the end not quite as definitive and actionable as I would like, this works as great basis for 

further development and learning. In the next iteration, I will aim to cut down the assumptions, try 

the alternative approach of minimizing the range and find ways for the method to work with variable 

amounts of carbohydrates and insulin. In the course of this exploration,however, I learned a lot of 

mathematics, programming and even writing, especially modeling, data processing and visualization 

and got very interested in their various aspects and forms. It was a very humbling experience, once 

again returning me to the beginner’s mindset, as I basically was one in all aspects of the exploration. 

It showed me how much there is still to learn, understand and discover while still showing me a 

glimpse of the tremendous power and potential mathematics has to offer for all problem solving 

from the mundane to life-altering, leaving me inspired to learn and explore a lot more.  
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